Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482495

RESUMO

Since the Coronavirus Disease 2019 (COVID-19) outbreak, unconventional cell line development (CLD) strategies have been taken to enable development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies at expedited speed. We previously reported a novel chemistry, manufacturing, and control (CMC) workflow and demonstrated a much-shortened timeline of 3-6 months from DNA to investigational new drug (IND) application. Hereafter, we have incorporated this CMC strategy for many SARS-CoV-2-neutralizing antibody programs at WuXi Biologics. In this paper, we summarize the accelerated development of a total of seven antibody programs, some of which have received emergency use authorization  approval in less than 2 years. Stable pools generated under good manufacturing practice (GMP) conditions consistently exhibited similar productivity and product quality at different scales and batches, enabling rapid initiation of phase I clinical trials. Clones with comparable product quality as parental pools were subsequently screened and selected for late-stage development and manufacturing. Moreover, a preliminary stability study plan was devised to greatly reduce the time required for final clone determination and next-generation sequencing-based viral testing was implemented to support rapid conditional release of the master cell bank for GMP production. The successful execution of these COVID-19 programs relies on our robust, fit for purpose, and continuously improving CLD platform. The speed achieved for pandemic-related biologics development may innovate typical biologics development timelines and become a new standard in the industry.

2.
Appl Microbiol Biotechnol ; 105(13): 5407-5417, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34155529

RESUMO

Fungal terpenoids catalyzed by bifunctional terpene synthases (BFTSs) possess interesting bioactive and chemical properties. In this study, an integrated approach of genome mining, heterologous expression, and in vitro enzymatic activity assay was used, and these identified a unique BFTS sub-clade critical to the formation of a 5-15 trans-fused bicyclic sesterterpene preterpestacin I (1). The 5-15 bicyclic BFTS gene clusters were highly conserved but showed relatively wide phylogenetic distribution across several species of the diverged fungal classes Dothideomycetes and Sordariomycetes. Further genomic organization analysis of these homologous biosynthetic gene clusters from this clade revealed a glycosyltransferase from the graminaceous pathogen Bipolaris sorokiniana isolate BS11134, which was absent in other 5-15 bicyclic BFTS gene clusters. Targeted isolation guided by BFTS gene deletion led to the identification of two new sesterterpenoids (4, and 6) from BS11134. Compounds 2 and 4 showed moderate effects on LPS-induced nitrous oxide production in the murine macrophage-like cell line RAW264.7 with in vitro inhibition rates of 36.6 ± 2.4% and 24.9 ± 2.1% at 10 µM, respectively. The plausible biosynthetic pathway of these identified compounds was proposed as well. This work revealed that phytopathogenic fungi can serve as important sources of active terpenoids via systematic analysis of the genomic organization of BFTS biosynthetic gene clusters, their phylogenetic distribution in fungi, and cyclization properties of their metabolic products. KEY POINTS: • Genome mining of the first BFTS BGC harboring a glycosyltransferase. • Gene-deletion guided isolation revealed three novel 5-15 bicyclic sesterterpenoids. • Biosynthetic pathway of isolated sesterterpenoids was proposed.


Assuntos
Vias Biossintéticas , Fungos , Animais , Anti-Inflamatórios , Vias Biossintéticas/genética , Fungos/genética , Camundongos , Família Multigênica , Filogenia , Terpenos
3.
Appl Microbiol Biotechnol ; 104(19): 8267-8278, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32830291

RESUMO

The current global demand for novel anti-TB drugs has drawn urgent attention on the discovery of natural product compounds with anti-TB activity. Lots of efforts have emphasized on environmental samples from unexplored or underexplored natural habits and identified numerous rare actinomycete taxa producing structurally diverse bioactive natural products. Herein, we report a survey of the rare actinobacteria diversity in Xinjiang region together with the discovery of anti-TB active natural products from these strains. We have collected 17 soil samples at different sites with different environmental conditions, from which 39 rare actinobacteria were identified by using a selective isolation strategy with 5 media variations. Among those isolated strains, XJ31 was identified as a new Nocardia sp. based on 16S rRNA gene analysis. Through one strain-many compounds (OSMAC) strategy combined with anti-Bacillus Calmette-Guérin bioassay-guided isolation, two groups of compounds were identified. They were twelve siderophores (nocardimicins, 1-12) and two anthraquinones (brasiliquinones, 13 and 14) and ten of them were identified as new compounds. The structures of the purified compounds were elucidated using HR-ESI-MS, 1D NMR, and 2D NMR techniques. The anti-TB bioassays revealed that the two benz[α]anthraquinones have potent activity against BCG (MICs = 25 µM), which can be used as a promising start point for further anti-TB drug development. KEY POINTS: • Ten new natural products were identified from Nocardia sp. XJ31. • Brasiliquinones 13 and 14 showed moderate anti-BCG activity.


Assuntos
Actinobacteria , Nocardia , Actinobacteria/genética , Antraquinonas , Nocardia/genética , Filogenia , RNA Ribossômico 16S/genética , Sideróforos , Microbiologia do Solo
4.
Chem Commun (Camb) ; 56(70): 10171-10174, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32748904

RESUMO

Two pairs of dibenzospiroketal racemates, (±)-epicospirocin A (1a/1b) and (±)-1-epi-epicospirocin A (2a/2b), and two (+)-enantiomers of aspermicrones, ent-aspermicrone B (3b) and ent-aspermicrone C (4b), together with two hemiacetal epimeric mixtures, epicospirocin B/1-epi-epicospirocin B (5/6) and epicospirocin C/1-epi-epicospirocin C (7/8), were investigated from the phytopathogenic fungus Epicoccum nigrum 09116 via MS/MS molecular networking guided isolation and chiral separation for the first time. A plausible epicospirocin biosynthetic pathway was elucidated through in silico gene function annotation together with knock-out experiments. This is the first report that has applied MS/MS molecular networking to identify intermediates correlated with a biosynthetic pathway.


Assuntos
Furanos/química , Furanos/metabolismo , Compostos de Espiro/química , Compostos de Espiro/metabolismo , Ascomicetos/genética , Ascomicetos/metabolismo , Simulação por Computador , Estereoisomerismo
5.
Appl Microbiol Biotechnol ; 104(4): 1533-1543, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31894364

RESUMO

Marine microorganisms live in dramatically different environments and have attracted much attention for their structurally unique natural products with potential strong biological activity. Based on the one strain-many compounds (OSMAC) strategy and liquid chromatography mass spectrometry (LC-MS) methods, our continuing efforts on the investigation of novel active compounds from marine Verrucosispora sp. MS100137 has led to the identification of a new polycyclic metabolite, abyssomicin Y (1), together with six known abyssomicin and proximicin analogs (2-7). Abyssomicin Y is a type I abyssomicin with an epoxide group at C-8 and C-9. Compounds 1-3 showed potent inhibitory effects against the influenza A virus; their observed inhibition rates were 97.9%, 98.3%, and 95.9%, respectively, at a concentration of 10 µM, and they displayed lower cytotoxicity than 4. The structures were determined by different NMR techniques and HRMS experiments. This investigation revealed that OSMAC could serve as a useful method for enabling the activation of the silent genes in the microorganism and for the formation of previously unreported active secondary metabolites.


Assuntos
Antivirais/farmacologia , Organismos Aquáticos/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Micromonosporaceae/química , Células A549 , Antivirais/isolamento & purificação , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/isolamento & purificação , Cromatografia Líquida , Humanos , Espectrometria de Massas , Metabolismo Secundário
6.
Synth Syst Biotechnol ; 4(4): 173-179, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31667367

RESUMO

Microbes serve as the most important resource for drug discovery. During our screening for bioactive compounds from our natural products library, a pathogenic fungus, Microdochium majus strain 99049, from wheat was selected for further investigation. A new alkaloid named brocaeloid D (1), together with six previously characterized compounds (2-7) were identified. Compound 1 belongs to 4-oxoquinoline with C-2 reversed prenylation and a succinimide substructure. All the structures of these newly isolated compounds were determined by different means in spectroscopic experiments. The absolute configurations of 1 was further deduced from comparison of its CD spectrum with that of known compound 2. The bioactivities of these identified compounds were evaluated against several pathogenic microorganisms and cancer cell lines. Compounds 1-5 showed activity against HUH-7 human hepatoma cells with IC50 values of 80 µg/mL. Compound 6 showed mild activity against HeLa cells (IC50 = 51.9 µg/mL), weak anti-MTB activity (MIC = 80  µg/mL), and moderate anti-MRSA activity (MIC = 25 µg/mL), and compound 7 showed weak anti-MRSA activity (MIC = 100 µg/mL).

7.
Appl Microbiol Biotechnol ; 103(13): 5167-5181, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31001746

RESUMO

Halogen substituents are important for biological activity in many compounds. Genome-based mining of halogenase along with its biosynthetic gene cluster provided an efficient approach for the discovery of naturally occurring organohalogen compounds. Analysis of the genome sequence of a phytopathogenic fungus Bipolaris sorokiniana 11134 revealed a polyketide gene cluster adjacent to a flavin-dependent halogenase capable of encoding halogenated polyketides, which are rarely reported in phytopathogenic fungi. Furthermore, MS- and UV-guided isolation and purification led to the identification of five chlorine-containing natural products together with seven other chromones and xanthones. Two of the chlorinated compounds and four chromones are new compounds. Their structures were elucidated by NMR spectroscopic analysis and HRESIMS data. The biosynthetic gene clusters of isolated compounds and their putative biosynthetic pathway are also proposed. One new chlorinated compound showed activity against Staphylococcus aureus, methicillin-resistant S. aureus, and three clinical-resistant S. aureus strains with a shared minimum inhibitory concentration (MIC) of 12.5 µg/mL. Genome-based mining of halogenases combined with high-resolution MS- and UV-guided identification provides an efficient approach to discover new halogenated natural products from microorganisms.


Assuntos
Ascomicetos/química , Ascomicetos/genética , Cromonas/química , Genoma Fúngico , Xantonas/química , Vias Biossintéticas , Genômica , Halogenação , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Família Multigênica , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...